
CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

CSCE 2110
Foundations of Data Structures

Abstract Data Type, List, Stack, and Queue

University of North Texas

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Contents

• Abstract data type

o Array

• List, Stack, and Queue

o ADT

o Implementations

o Algorithm analysis

o Applications

o Postfix conversion

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Elementary Data Structures

“Mankind’s progress is measured by the number of things we can do
without thinking.”

Elementary data structures such as stacks, queues, lists, and heaps are
the “off-the-shelf” components we build our algorithm from.

A data organization, management, and storage format that enables
efficient access and modification.

There are two aspects to any data structure:

• The abstract operations which it supports (abstract data type,
ADT).

• The implementation of these operations.

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Data Abstraction

• That we can describe the behavior of our data
structures in terms of abstract operations is why we can
use them without thinking.
o Push(x, s) – Insert item 𝑥 at the top of stack 𝑠.

o Pop(s) – Return (and remove) the top item of stack 𝑠.

• That there are different implementations of the same
abstract operations enables us to optimize performance
in difference circumstances.

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Fundamental Data Structures

Data structures can be neatly classified as either
contiguous or linked, depending upon whether they are
based on arrays or pointers:

• Contiguously-allocated structures are composed of single
slabs of memory, and include arrays, matrices, heaps, and
hash tables.

• Linked data structures are composed of multiple distinct
chunks of memory bound together by pointers, and include
lists, trees, and graph adjacency lists.

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Array — Abstract Data Type

• The array is an abstract data type (ADT) that holds a
collection of elements accessible by an index.

o elements can be anything, primitive types such as integers
to more complex types like instances of classes

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Array — Abstract Data Type

• Minimal Required Functionality
o set(i, v) -> Sets the value of index i to v

o get(i) -> Returns the value of index i in the array

• The array is an abstract data type (ADT) that holds a
collection of elements accessible by an index.

o elements can be anything, primitive types such as integers
to more complex types like instances of classes

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Array — Data Structure

• An array is a structure of fixed-size data records such
that each element can be efficiently located by its index
or (equivalently) address.

• Advantages of contiguously-allocated arrays include

o Constant-time access given the index.

o Arrays consist purely of data, so no space is wasted with
links or other formatting information.

o Physical continuity (memory locality) between successive
data accesses helps exploit the high-speed cache memory
on modern computer architectures.

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Dynamic Arrays

• Unfortunately, we cannot adjust the size of simple
arrays in the middle of a program’s execution.

• Compensating by allocating extremely large arrays can
waste a lot of space.

• With dynamic arrays we start with an array of size 1 and
double its size from 𝑚 to 2𝑚 each time we run out of
space.

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Dynamic Arrays

• Unfortunately, we cannot adjust the size of simple
arrays in the middle of a program’s execution.

• Compensating by allocating extremely large arrays can
waste a lot of space.

• With dynamic arrays we start with an array of size 1 and
double its size from 𝑚 to 2𝑚 each time we run out of
space.

 How many times will we double for 𝑛 elements?

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Dynamic Arrays

• Unfortunately, we cannot adjust the size of simple
arrays in the middle of a program’s execution.

• Compensating by allocating extremely large arrays can
waste a lot of space.

• With dynamic arrays we start with an array of size 1 and
double its size from 𝑚 to 2𝑚 each time we run out of
space.

 How many times will we double for 𝑛 elements?

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

How Much Total Work?

• The apparent waste in this procedure involves the
recopying of the old contents on each expansion.

Item No.: 1 2 3 4 5 6 7 8 9 10 …

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

How Much Total Work?

• The apparent waste in this procedure involves the
recopying of the old contents on each expansion.

Item No.: 1 2 3 4 5 6 7 8 9 10 …

Array size: 1 2 4 4 8 8 8 8 16 16 …

Cost: 1 2 3 1 5 1 1 1 9 1 …

1 + 1 + ⋯ 1 + (1 + 2 + 4 + ⋯)
𝑛 items lg(𝑛 − 1)+1
items

Cost ≤ 𝑛 + 2𝑛 = 3𝑛 = 𝑂(𝑛)

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

List ADT
• A list contains elements of same type arranged in sequential order

operations performed on the list:

o get() – Return an element from the list at any given position.

o insert() – Insert an element at any position of the list.

o remove() – Remove the first occurrence of any element from a
non-empty list.

o removeAt() – Remove the element at a specified location from a
non-empty list.

o replace() – Replace an element at any position by another
element.

o size() – Return the number of elements in the list.

o isEmpty() – Return true if the list is empty, otherwise return
false.

o isFull() – Return true if the list is full, otherwise return false.

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Pointers and Linked Structures

• Pointers represent the address of a location in memory.
A cell-phone number can be thought of as a pointer to
its owner as they move about the planet.

• In C/C++, *p denotes the item pointed to by p, and &x
denotes the address (i.e., pointer) of a particular
variable x.

• A special NULL pointer value is used to denote structure
terminating or unassigned pointers.

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Linked List

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Searching a List

• Searching in a linked list can be done iteratively or
recursively.

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Insertion into a List

• Since we have no need to maintain the list in any
particular order, we might as well insert each new item
at the head.

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Deleting from a List: Find Predecessor

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Deleting from a List: Remove Item

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Advantages of Linked Lists

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Singly or Doubly Linked Lists

Singl
y

Doubl
y

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

What Is a Stack?

• Stores a set of elements in a particular order

• Stack principle: LAST IN FIRST OUT

• = LIFO

• It means: the last element inserted is the first one to be
removed

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

What Is a Stack?

Which is the first
element to pick up?

• Stores a set of elements in a particular order

• Stack principle: LAST IN FIRST OUT

• = LIFO

• It means: the last element inserted is the first one to be
removed

• Example

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

What Is a Stack?

• Stores a set of elements in a particular order

• Stack principle: LAST IN FIRST OUT

• = LIFO

• It means: the last element inserted is the first one to be
removed

• Example

• Applications
o “Undo” operation

o Call function in program

o …

Which is the first
element to pick up?

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Stack ADT

• A finite ordered list with zero or more elements

• Methods

o push() – Insert an element at one end of the stack called
top.

o pop() – Remove and return the element at the top of the
stack, if it is not empty.

o peek() – Return the element at the top of the stack
without removing it, if the stack is not empty.

o size() – Return the number of elements in the stack.

o isEmpty() – Return true if the stack is empty, otherwise
return false.

o isFull() – Return true if the stack is full, otherwise return
false.

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Implementing a Stack

• At least two different ways to implement a stack

o array

o linked list

• Which method to use depends on the application
o what advantages and disadvantages does each

implementation have?

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Implementing a Stack: Array

• Advantages
o best performance

• Disadvantage

o fixed size

• Basic implementation
o initially empty array

o field to record where the next data gets placed into

o if array is full, push() returns false, otherwise adds it into
the correct spot

o if array is empty, pop() returns null, otherwise removes the
next item in the stack

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Last In First Out

stack
top

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Last In First Out

A top

stack

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Last In First Out

A

B top

stack

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Last In First Out

A

B

C top

stack

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Last In First Out

A

B

C

D top

stack

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Last In First Out

A

B

C

D

E top

stack

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Last In First Out

A

B

C

D top

stack

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Last In First Out

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Array-based Stack Implementation

• Allocate an array of some size (pre-defined)
o Maximum 𝑁 elements in stack

• Associated with each stack is top

o Bottom stack element stored at element 0

o for an empty stack, set top to -1

o last index in the array is the top

• Increment top when one element is pushed, decrement it
after pop

o Push
➢ (1) Increment top by 1

➢ (2) Set Stack[top]=x

o Pop
➢ (1) Set return value to Stack[top]

➢ (2) Decrement top by 1.

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Stack Class

class Stack {
public:

Stack(int size = 10); // constructor

~Stack() { delete [] values; } // destructor
bool IsEmpty() { return top == -1; }

bool IsFull() { return top == maxTop; } double
Top();

void Push(const double x);

double Pop();

void DisplayStack();

private:
int maxTop; // max stack size = size - 1 int top;
 // current top of stack double*
values; // element array

};

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Create Stack

• The constructor of Stack
o Allocate a stack array of size. By default, size = 10

o When the stack is full, top will have its maximum value,
i.e., size – 1

o Initially top is set to -1. It means the stack is empty

Stack::Stack(int size /*= 10*/) {

 maxTop = size - 1;

 values = new double[size];

 top = -1;

}

Although the constructor dynamically allocates the stack array, the
stack is still static. The size is fixed after the initialization.

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Push Stack

• void Push(const double x)

o Push an element onto the stack

o If the stack is full, print the error information

o Note top always represents the index of the top element.
After pushing an element, top increased by 1

void Stack::Push(const double x) {

 if (IsFull())

 cout << "Error: the stack is full." << endl;

 else

 values[++top] = x;

}

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Pop Stack

• double Pop()

o Pop and return the element at the top of the stack

o If the stack is empty, print the error information. (In this
case, the return value is useless.)

o Don’t forgot to decrement top

double Stack::Pop() {

 if (IsEmpty()) {

 cout << "Error: the stack is empty." << endl;

 return -1;

 } else {

 return values[top--];

 }

}

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Remaining Methods (array based)

double Stack::isEmpty() {

 return top == -1;

}

double Stack::isFull() {

 return top == maxTop;

}

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Algorithm Analysis

• Push

• Pop

• isEmpty

• isFull

𝑂(?)

𝑂(?)

𝑂(?)

𝑂(?)

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Implementing a Stack: Linked List

• Advantages

o always constant time to push or pop an element

o can grow to an infinite size

• Disadvantage

o the common case is slower

o can grow to an infinite size

• Basic implementation
o list is initially empty

o push() method adds a new item to the head of the list

o pop() method removes the head of the list

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

List-based Stack Implementation: Push

void push(element item)

{

 /* add an element to the top of the stack */

pnode temp = (pnode) malloc (sizeof (node));

if (IS_FULL()) {

 fprintf(stderr, “ The memory is full\n”);

 exit(1);

 }

 temp->item = item;

 temp->next = top;

 top = temp;

}

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Pop

element pop(pnode top) {

 /* delete an element from the stack */

 pnode temp = top;

 element item;

 if (IS_EMPTY(temp)) {

 fprintf(stderr, “The stack is empty\n”);

 exit(1);

 }

 item = temp->item;

 top = temp->next;

 free(temp);

 return item;

}

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Algorithm Analysis

• Push

• Pop

• isEmpty

𝑂(?)

𝑂(?)

𝑂(?)

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Applications

• Balancing Symbols

• Evaluation of Postfix Expressions

• Infix to Postfix conversion

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Balancing Symbols

• To check that every right brace, bracket, and
parentheses must correspond to its left counterpart
o e.g., [()] is legal, but [(]) is illegal

A stack is useful for checking symbol balance. When a
closing symbol is found it must match the most recent
opening symbol of the same type.

Applicable to checking html and xml tags!

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Balancing Symbols

• Algorithm

(1) Make an empty stack

(2) Read characters until end of file

➢ If the character is an opening symbol, push it onto the stack

➢ If it is a closing symbol, then if the stack is empty, report an

error

➢ Otherwise, pop the stack. If the symbol popped is not the

corresponding opening symbol, then report an error

(3) At the end of file, if the stack is not empty, report an error

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Mathematical Calculations

• What does 3 + 2 * 4 equal?

 2 * 4 + 3?

 (3 + 2) * 4?

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Mathematical Calculations

• What does 3 + 2 * 4 equal?

 2 * 4 + 3?

 (3 + 2) * 4?

• A mathematical expression cannot simply be evaluated

left to right

• The precedence of operators affects the order of

operations

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Infix and Postfix Expressions

• The way we use to write expressions is known as infix

notation

• Postfix notation is a notation that the operands appear

before their operators

• Postfix expression does not require any precedence rules

• 3 2 * 1 + is postfix of 3 * 2 + 1

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Evaluation of Postfix Expressions

• Easy to do with a stack

• Given a proper postfix expression:

o get the next token

o if it is an operand push it onto the stack

o else if it is an operator

➢ pop the stack for the right-hand operand

➢ pop the stack for the left-hand operand

➢ apply the operator to the two operands

➢ push the result onto the stack

o when the expression has been exhausted, the result is the

top (and only element) of the stack

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Clicker Question

• What does the following postfix expression evaluate to?

 6 3 2 + *

A. 18

B. 36

C. 24

D. 11

E. 30

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Clicker Question

• What does the following postfix expression evaluate to?

 6 3 2 + *

A. 18

B. 36

C. 24

D. 11

E. 30

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Evaluation of Postfix Expressions

• The time to evaluate a postfix expression is 𝑂(𝑛)

o processing each element in the input consists of stack

operations and thus takes constant time

• Evaluate the following postfix expressions and write out a

corresponding infix expression:

2 5 ^ 1 −

2 3 2 4 ∗ + ∗

1 2 3 4 ^ ∗ +

1 2 − 3 2 ^ 3 ∗ 6 / +

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Infix to Postfix Conversion

• Parse: To determine the syntactic structure of a sentence or other

utterance

• Operands: add to the output expression

• Open parenthesis: push onto stack

• Close parenthesis: pop stack symbols until an open parenthesis

appears

• Operators:

o Compare on stack and off stack precedence, except open parenthesis

o Pop all stack symbols until a symbol of lower precedence appears. Then

push the operator

• End of input: Pop all remaining stack symbols and add to the output

expression

Requires operator precedence parsing algorithm

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Infix to Postfix Conversion

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Infix to Postfix Conversion

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Infix to Postfix Conversion

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Infix to Postfix Conversion

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Infix to Postfix Conversion

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Infix to Postfix Conversion

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Infix to Postfix Conversion

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Infix to Postfix Conversion

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Infix to Postfix Conversion

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Infix to Postfix Conversion

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Infix to Postfix Conversion

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Infix to Postfix Conversion

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Infix to Postfix Conversion

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Infix to Postfix Conversion

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Infix to Postfix Conversion

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Infix to Postfix Conversion

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Infix to Postfix Conversion

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Infix to Postfix

• Convert the following equations from infix to postfix:

 (2 ^ 3) ^ 3 + 5 * 1

 1 + 2 - 1 * 3 / 3 + 2 ^ 2 / 3

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Queue Overview

• Queue ADT

• Basic operations of queue
o Enqueuing, dequeuing, etc

• Implementation of queue

o Array

o Linked list

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

The Queue ADT

• Another form of restricted list

– Insertion is done at one end, whereas deletion is
performed at the other end

• Basic operations of queue
– enqueue: insert an element at the rear of the list

– dequeue: delete the element at the front of the list

• First-in First-out (FIFO) list

Queue
enqueuedequeue

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Queue Applications

• Real life examples
o Waiting in line

o Waiting on hold for tech support

• Applications related to Computer Science
o Threads

o Job scheduling (e.g., Round-Robin algorithm for CPU
allocation)

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Queue Implementation of Array

• There are several different algorithms to implement
Enqueue and Dequeue

• Naïve way
o When enqueuing, the front index is always fixed, and the

rear index moves forward in the array

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Queue Implementation of Array

• Naïve way

o When enqueuing, the front index is always fixed, and the
rear index moves forward in the array

o When dequeuing, the element at the front the queue is
removed. Move all the elements after it by one position.
(Inefficient!!!)

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Queue Implementation of Array

• Better way

o When an item is enqueued, make the rear index move
forward

o When an item is dequeued, the front index moves by one
element towards the back of the queue (thus removing the
front item, so no copying to neighboring elements is
needed)

The problem here is that the rear index cannot
move beyond the last element in the array.

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Implementation using Circular Array

• Using a circular array

• When an element moves past the end of a circular array,
it wraps around to the beginning, e.g.,
o OOOOO7963 -> 4OOOO7963 (after Enqueue(4))

o After Enqueue(4), the rear index moves to 0

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Implementation using Circular Array

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Empty or Full?

• Empty queue

– rear = front - 1

• Full queue?

– the same!

– Reason: 𝑛 values to represent 𝑛 + 1 states

• Solutions

– Use a boolean variable to say explicitly whether the queue is
empty or not

– Make the array of size 𝑛 + 1 and only allow 𝑛 elements to be
stored

– Use a counter of the number of elements in the queue

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Queue Implementation of Circular Array

class Queue {

 public:

 Queue(int size = 10); // constructor

 ~Queue() { delete [] values; } // destructor

 bool IsEmpty(void);

 bool IsFull(void);

 bool Enqueue(double x);

 bool Dequeue(double & x);

 void DisplayQueue(void);

 private:

 int front; // front index

 int rear; // rear index

 int counter; // number of elements

 int maxSize; // size of array queue

 double* values; // element array

};

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Create Queue

• Allocate a queue array of size. By default, size = 10

• front is set to 0, pointing to the first element of the
array

• rear is set to -1. The queue is empty initially

Queue::Queue(int size /* = 10 */) {

values = new double[size];

maxSize = size;

front = 0;

rear = -1;

counter = 0;

}

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

IsEmpty & IsFull

• Since we keep track of the number of elements that are
actually in the queue: counter, it is easy to check if the
queue is empty or full

bool Queue::IsEmpty() {

 if (counter) return false;

 else return true;

}

bool Queue::IsFull() {

 if (counter < maxSize)

 return false;

 else

 return true;

}

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Enqueue

bool Queue::Enqueue(double x) {

 if (IsFull()) {

 cout << "Error: the queue is full." << endl;

 return false;

 }

 else {

 // calculate the new rear position (circular)

 rear = (rear + 1) % maxSize;

 // insert new item

 values[rear] = x;

 // update counter

 counter++; return true;

 }

}

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Dequeue

bool Queue::Dequeue(double & x) {

 if (IsEmpty()) {

 cout << "Error: the queue is empty." << endl;

 return false;

 }

 else {

 // retrieve the front item

 x = values[front];

 // move front

 front = (front + 1) % maxSize;

 // update counter

 counter--;

 return true;

 }

}

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Algorithm Analysis

• Enqueue

• Dequeue

• size

• isFull

• isEmpty

𝑂(?)

𝑂(?)

𝑂(?)

𝑂(?)

𝑂(?)

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

List-based Queue Implementation: Enqueue

void enqueue(element item)

{

 /* add an element to the rear of the queue */

 pnode temp = (pnode) malloc(sizeof (queue));

 if (IS_FULL(temp)) {

 fprintf(stderr, “ The memory is full\n”);

 exit(1);

 }

 temp->item = item;

 temp->next = NULL;

 if (front) { (rear) -> next= temp;}

 else front = temp;

 rear = temp;

}

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

List-based Queue Implementation: Dequeue

element dequeue(pnode &front)

{

 /* delete an element from the queue */

 pnode temp = front; element item;

 if (IS_EMPTY(front)) {

 fprintf(stderr, “The queue is empty\n”);

 exit(1);

 }

 item = temp->item;

 front = temp->next;

 free(temp);

 return item;

}

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Algorithm Analysis

• Enqueue

• Dequeue

• size

• isFull

• isEmpty

𝑂(?)

𝑂(?)

𝑂(?)

𝑂(?)

𝑂(?)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95

